Wideband Simulation of Earthquake Ground Motion by a Spectrum-matching, Multiple-pulse Technique
نویسندگان
چکیده
To simulate earthquake ground motion, we combine a multiple-point stochastic earthquake fault model and a suite of Green functions. Conceptually, our source model generalizes the classic one of Haskell (1966). At any time instant, slip occurs over a narrow strip that sweeps the fault area at a (spatially variable) velocity. This behavior defines seismic signals at lower frequencies (LF), and predicts directivity effects. High-frequency (HF) behavior of source signal is defined by local slip history, assumed to be a short segment of pulsed noise. For calculations, this model is discretized as a grid of point subsources. Subsource moment rate time histories, in their LF part, are smooth pulses whose duration equals to the rise time. In their HF part, they are segments of non-Gaussian noise of similar duration. The spectral content of subsource time histories is adjusted so that the summary far-field signal follows certain predetermined spectral scaling law. The results of simulation depend on random seeds, and on particular values of such parameters as: stress drop; average and dispersion parameter for rupture velocity; rupture nucleation point; slip zone width/rise time, wavenumber-spectrum parameter defining final slip function; the degrees of non-Gaussianity for random slip rate in time, and for random final slip in space, and more. To calculate ground motion at a site, Green functions are calculated for each subsource-site pair, then convolved with subsource time functions and at last summed over subsources. The original Green function calculator for layered weakly inelastic medium is of the discrete wavenumber kind, with no intrinsic limitations with respect to layer thickness or frequency band. The simulation package can generate example motions, or used to study uncertainties of the predicted motion. As a test, realistic analogs of recorded motions in the epicentral zone of the 1994 Northridge, California earthquake were synthesized, and related uncertainties were estimated.
منابع مشابه
GENERATION OF MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE ACCELEGRAMS WITH HARTLEY TRANSFORM AND RBF NEURAL NETWORK
The Hartley transform, a real-valued alternative to the complex Fourier transform, is presented as an efficient tool for the analysis and simulation of earthquake accelerograms. This paper is introduced a novel method based on discrete Hartley transform (DHT) and radial basis function (RBF) neural network for generation of artificial earthquake accelerograms from specific target spectrums. Acce...
متن کاملStochastic Finite Fault Modeling for the 16 September 1978 Tabas, Iran, Earthquake
The main objective of this study is estimating acceleration time history of 16 September 1978 Tabas earthquake incorporating the seismological/geological source-path and site model parameters by using finite-fault simulation approach. The method generalizes the stochastic ground-motion simulation technique, developed for point sources, to the case of finite faults. It subdivides the fault plane...
متن کاملWavelet-based Analysis for Pulse Period of Earthquake Ground-motions
Pulse period of earthquake records has been known as a key parameter in seismology and earthquake engineering. This paper presents a detailed characterization of this parameter for a special class of earthquake records called pulse-like ground motions. This type of motions often resulting from directivity effects is characterized by a strong pulse in the velocity time history of motion, in norm...
متن کاملPreservation of Velocity Pulses in Response Spectral Matching
Response spectral matching is a process in which a real recorded earthquake ground motion is modified such that its response spectrum matches a desired target spectrum across a range of periods. Spectral matching algorithms aim to minimise artificial adjustments introduced to the seed, such that original non-stationary characteristics, such as velocity pulses commonly observed in ground motions...
متن کاملGENERATION OF OPTIMIZED SPECTRUM COMPATIBLE NEAR-FIELD PULSE-LIKE GROUND MOTIONS USING ARTIFICIAL INTELLIGENCE
The existence of recorded accelerograms to perform dynamic inelastic time history analysis is of the utmost importance especially in near-fault regions where directivity pulses impose extreme demands on structures and cause widespread damages. But due to the scarcity of recorded acceleration time histories, it is common to generate proper artificial ground motions. In this paper an alternative ...
متن کامل